
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  19 ( 1 9 8 4 )  21 5 3 - 2 1 6 4  

The interdependence between the 
incidence angles associated with 
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erosion 
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A general discussion, which is valid for any angular dependence of sputtering yield S = 
S(0), concerning the interdependence between the incidence angles 0e and 00, associated 
with quasi-stable intersections during ion erosion, is given. The object was firstly to 
establish the location of 0 e roots as a function of 0 o and secondly to identify the 
stationary points and general trend for the complex dependence 0e = 0e(0e). The 
results obtained are applied to a quasi-stability analysis of some specific surface features 
during ion erosion. Various possible types of quasi-stable intersections (surface-surface, 
plane-surface, plane-plane) are reviewed from the point of view of their evolution 
caused by ion bombardment. 

1. Introduction 
Several earlier works [1-5] have pointed out the 
significance of the quasi-stable angular points 
evaluation in the study of mechanisms for ion- 
induced surface roughening, the improvement 
of surface analysis methods using ion beams and 
the applications of ion etching in microelectronics. 

In a recent paper [6], a single analytical con- 
dition has been inferred, for the existence of quasi- 
stable angular points (having transient linear 
trajectories during ion erosion), relating the 
associated incidence angles 0o and 0e only to the 
angular dependence of sputtering yield. This 
analytical condition, equivalent to the double one 
previously given [1, 2] and also graphically 
deduced on the basis of an erosion slowness curve, 
leads to a higher degree algebraic equation with 
one parameter, valid for any S = S(O) dependence. 
Since S(O) can be fitted by an algebraic polynom 

in cos 0 [ 1--4, 7--9], the algebraic equation obtained 
has allowed the computation of 0e angles corre- 
sponding to a given 0o for three peculiar shapes of 
S(O). Some angular values important for ion 
erosion have been estimated by similar higher 
degree algebraic equations [ 10]. 

This work presents a general discussion of the 
analytical condition stated above and implicity 
of the attached algebraic equation in order to 
establish the general character of the inter- 
dependence between the incidence angles 0o, 0e 
associated with quasi-stable intersections. The 
location of 0e roots, parametrically depending 
on the 00 angle, and the identification of stationary 
points Of0e = 0e(00)is also discussed. 

2. Theoretical discussion 
The similarity of 0e = 0e(0o) curves, where the 
angular values are incidence angles associated 
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with a quasi-stable intersection (angular point) 
during ion erosion [6] has suggested a general 
discussion on 0e roots as a function of 0o. For 
the existence of a quasi-stable surface-surface, 
plane-surface or plane-plane intersection, the 
angles 0e and 0o must satisfy the previously 
inferred analytical condition: 

dS[ = cos0o [S(Oo)-S(G)] 
,o=0e cos0e sin(0o --0e) (1) 

In the following discussion the following notation 
will be used: 

dS[ cos0o [S(Oo)-S(O~ 
F(Oe,Oo) = ~ 0=0e cos0e sin(0o -- 0e)(2) 

> 0 f o r  

d S[ ~ = 0for 
dO[ 

0=0e  ~ ' " - " ~  < 0 for 

sin(0o -- 0e) 

In the angular range 0eE [--90 ~ , +90~ 
we shall consider six (a, b) intervals~ (--90 ~ 
-0 , , ) ,  ( -0,~,  -Os,), (--0,,, 0~ (0 ~ 0,,), 
(Os,, Os2) and (Oh, 90~ where --Os~, --Os,, 
+0s , ,  +0s= are the consecutive roots of the 
derivative dF/d0 e. 

It is well known that there is no 0e root in 
the range (a, b) if F(a, 0o)F(b, 0o)/> 0 and at 
the most one root 0e if F(a, 0o)F(b, 0o) < 0, for 
a given 0o value. 

In order to locate the0e roots depending on 
0o, the variation of the sign for F(Oe, 0o) is pre- 
sented in Table I, taking into account the sign 
of each term in Equation 2, easily established as 
follows: 

0 e e  [--90~ U (0~ 

0e = 0 ~ and0e = ; 0 p  

Oe ~ (--Or,, 0 ~ U (0p, 90~ 

. . . ~ j ~  > 0 for 0~ 

= 0 fOr0e 

< 0 f o r 0 e  

0 for 0e E 

S(Oo)--S(Oe) ~ 0 for 0e 

< 0  for0 e 

The discussion will involve the location of the 
roots 0e of the equation F(Oe, 0o) = 0 as a func- 
tion of 0o, the identification of stationary points 
and the determination of the general variatiorr 
trend of the complex 0 e = 0e(0o) dependence. 

2.1. Roots  location 
The 0e roots of the equation F(Oe, 0o) = 0, also 
satisfying the Condition 1, are placed between 
the roots of the derivative dF/dOe, which can be 
easily written as: 

dF 
- d2S --2 tan0e-~0 (3) 

doe" dO2 0=0e 0=0e 

The equation dF /d0e=0  has four roots; 
+ 0s,, + 0s2, known as the inflexion points of 
the erosion slowness curve [2, 3]. The same 
angles, 0 s, are associated with t h e  returning 
points having an unique tangent o n t h e  cursor- 
shaped polar diagram representing V(O)/V(O ~ 
plotted against recession angle ~ [2]:  

2154 

(4) 

E [--90~ 

=0o 

~(0o,90 ~ 

(s) 

[ -  90 ~ , - 0 o )  u ( -  0o, 0o) u ( 0 o ,  90 ~ ] 

=-+0o,-+0o 

~(-0o,-0o)  U(0o,0o) 
(6) 

(in Condition 6 the angle 0o satisfies the equation 
S(Oo) = s(G)). 

The last sign in Condition 6 is valid for 0 ~ < 
0o <0p  and is also true for 0p <0o < 9 0  ~ if 
0o ~0o.  

In Table I, 
as a function 
(where S(O*) 

the location of 0 e roots is indicated 
of 0o. The angles -+ 0p and -+ 0* 

=S(0~ are also included for a 
more precise location. Although an extensive 
discussion will be made in Section 2.3, the varia- 
tion in trend of 0e roots depending on 0o is 
roughly marked in the table. 

Taking into account the symmetry properties 
of the function F(Oe, 0o), in Table I only the 
0e root location for 0o E [0 ~ 90 ~ is given because 
for 0o E [--90 ~ 0 ~ the behaviour is similar. For 
example, the location of 0e roots (0e E [-- 90 ~ 0 ~ 
and [0 ~ 90~ as a function of 0o parameter (0o E 
[-- 90 ~ 0~ is identical to that of 0e roots placed 
for 0o E [0 ~ 90 ~ in the range 0 e E [0 ~ 90 ~ and 
[--90 ~ 0 ~ respectively. These symmetry proper- 



T A B L E I The sign variation of the function F(0e, 0 o) 
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Location o f  roots 
. . . .  0 o = 0 o 

0 e~ >0  o 
. . . . . . .  e l  

01e <0~ 
. . . . . . .  0 ~1 > 0 ~ e I 

< 0 ~ . . . . . . . . .  0 e ~  

. . . . . . .  02 < 0  ~ 
e 2 

(physically trivial solution) 
* o (except for 0 o ~ (0o, 90 ) where 

if 0 j exists, being marked by. .) e I , , , 

ties as opposed to the point 0o = 0e = 0 ~ of  the 
dependence 0e = 0e(0o), connected to the possible 
interchange of  the incidence angles 0o and Oe, have 
been proved and numerically exemplified in some 
peculiar cases in a previous work [6]. 

Generally, the equation F(Oe,  0 o ) = 0  has 
four 0e roots: 0~e~, 0ae (positive) and 0~=, 02% 
(negative), for 0o @ [0 b, 90~ except for the 
physically trivial solution 0 ~ -- 0o which e 1 

corresponds to the lack of  angular points  How- 
ever, for the dependences S = S(O) which rapidly 
increase at small 0 angles, an extension of  the 

branch 01e, having negative values could be 
obtained for 0o E (0* ,  90~ In this last case, the 
above equation will have one positive and three 
negative roots. For 0o = 0g, the solutions will be: 
0~, = ~ ~ 0 ~ 02 02 < 0  ~ 0 ,0e, > and % ,  % 

To clarify the discussion concerning 0e roots 
location as a function of  00, the curves0e = 0e(0o) 
for a hypothetical S = S(O) dependence are plotted 
in Fig. 1. They are similar to those obtained for 
the specified S = S(O) [6]. The branches noted, 
0~ and 0~, are obtained by connecting the seg- 
ments 0e,,1 0e~l and 0~,, 0~ ,  respectively. 
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Figure 1 The dependence 0 e = Oe(Oo) calculated as described in [6] for a hypothetical angular variation of sputtering 
yield S = S(O ). 

Table II presents the summary of the Oe roots 
location depending on 0o. 0~ roots are placed in 
certain intervals, their variation trend as a function 
of  increasing 0o being indicated by arrows. The 
results are also confirmed in Sections 2.2 and 2.3 
by  the study of  the function F(Oe, 0o). 

Discussion of Tables I and II is generalized for 
any S = S ( O )  function which fits the experi- 
mentally observed angular variation of sputtering 

yield. The numerical results obtained for three 
S = S(O) functions [6] correspond to this general 
discussion. The same conclusions could be 
graphically deduced by  using the cursor-shaped 
polar diagram V(O)/V(O ~ plot ted against angle qJ 

[21 as was previously reported [6, 11]. 
If S = S(O) has such a form that the equation: 

sin 0 cos 0 ,-~ --S(O) 0 (7) 
GO 

TABLE II The location of 0 e roots as function of 0 o 

0o=01 0 1 2 et e I Oe I 

(00,90)  o ~ o ~ ( o s , , % )  o ~  * o 
00100 tOsl (Osl ~,Op) (0" +90 ~ 

�9 o 
Os~ Osl (00,90) 
Os "J'OotO p (O~ (0",~90 ~ 

or 
(o~2+o*) 

Op (0 ~ (Os,,O*) 
Op'tOo 1"0s2 (0~ (0 s2,~O ~ ) 
Os2 (0 ~ ,Os~ ) 0% 
Os2tOotO* (0~ (Op$Os 2) 
oo* 0 ~ (Op,% 2) 
O**O o t90 ~ (-- Os~ $~'0 ~ ) (0 p~,O s~ ) 
90 ~ 0 ~ Op 

o~ o~ 

- - O ~ ( - - O p , - - O s , ) '  --O~E(--90~ *) 
(-- Opt-- %,) (-- 90~ - 0") 
(--Op,--Os,) (--90~ *) 
(-- ep~ -- Osl) (--90~ - 0 . )  

--Op (--90~ *) 
(-- Opr Osl ) (-- 90~ - -0")  
( - O p , - O s , )  ( -  9 0 ~  o * ) 
( - o p t  -Os , )  ( - 9 0 ~  
(--Op,--Os,) ( --90~ *) 
( - -Opt+ - -Os,)  (-- 90~ •  
-- 0 p --  90 ~ 
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has two solutions 0t, ,  0 h [10], then the 0 e roots 
could be more closely localized by considering the 
angular values 0t and 0t (S(O0 = S(tJt)). 

Finally, it is important to observe from Table I 
the occurrence of the domains (0o, 0e) in which 
the function F has an unique sign, the 0e solutions 
of the equation F(O~, 0o) = 0 being the boundaries 
of these domains. The sign changes can also be 
revealed at the boundary crossing by means of the 
sign of derivative F '  which has the roots + 0sl 0 e 
-+ 0s, [2, 3]. In fact, since F~e > 0 for any given 
0o in the ranges 0 e E (-- 90 ~ -- 0~:) tO (0 ~ 0s~ ) U 
(0s2,90~ the function F is increasing. Thus, the 
crossing of the boundaries 02e2 ; 0~  = 00,0a~, and 
0e2~, 0~ =0o ,  respectively, takes place from 
negative to positive values for increasing 0~ in 
the ranges given (see Table I). For 0 e E(- -0s : ,  
0s,)U(0sl ,  Oh) we have F'0e < 0  so that the 
function F decreases which also implies the 
crossing of boundaries 01 and 01 e 2 e I ' 001 ---- 0 0 ,  

0~ ,  respectively, from the positive to the negative 
values. 

2.2. Identif icat ion of  s ta t ionary  points  
The stationary points of the dependences 0e = 
0e(00) will be determined using Equation 3. 
Since the equationF(0e, 0 o) = 0 contains implicitly 
the dependence 0e=0e(00), a well known 
theorem leads to the following result: 

! 
doe _ Foo (8) 
d0o F~ e 

By taking the derivative of function F against 0o 
and by using Equation 1, equivalent to F = 0, we 
obtain: 

0=0 e - -  cOs2 0o 
- -  = 0 = ~ 1 7 6  ( 9 )  

d0o cos 0o cos 0e sin (0o -- 0e) 

Therefore, by substituting F~e and F~o from 
Equations 3 and 9, respectively, Equation 8 
becomes: 

dS dS  os 0o Lo cos 0  L :o 
(11) 

Later the extremum points of the dependence 
0e = 0e(00) will be specified, taking into account 
the physical meaning in each case. The type of 
each extremum point will be later established in 
Section 2.3 by the study of derivative doe/d0o. 
Some stationary points have been identified by 
numerical computation for specific S=S(0 )  
curves [6], although their existence has not been 
mathematically demonstrated for any function 
S = S(O) proper to describe the angular variation 
of sputtering yield. 

The extremum Condition 11 leads to the 
following (0o, 0e) stationary points, marked in 
Fig. 1, except for the trivial solution 0e = 0o 
which corresponds to the lack of angular points: 

(a) 0 0 = ~ 9 0  ~ , 0e=-+90 ~ is a marginal 
absolute extremum of 0~ = 0~(0o) (maximum for 
0e> 0 ~ minimum for 0e< 0~ Physically, this 
case corresponds to the grazing bombardment of 
a vertical wall with a vanishing thickness; 

(b) 0o = T- 90 ~ 0e = + 0p signifies a marginal 
extremum point of the dependence 0ae = 0~(0o) 
(maximum for 0e > 0 ~ minimum for 0e < 0~ 
This point is connected to the bombardment of 
an acute angle (90 ~ --0p) edge with an ion beam 
perfectly grazing to one microfacet. It is evident 
that the regression trajectory of the angular point 
will be along the microfacet grazingly oriented 
to the ion beam; 

(c) 0 o = ~ 0 p ,  0e=+-0p corresponds to the 
absolute extremum point of the dependence 
0~ = 01e(00) (maximum for 0e > 0 ~ minimum 
for 0e < 0~ This important case is related to the 
bombardment of an edge (acute angle 180 ~  
20p) along its bisector, the microfacet normals 
making a 0p angle with the ion-beam direction. 
The angular point regression will take place along 
the edge symmetry axis coinciding with the beam 
direction. Stable plane-plane intersections of this 

dO e 

dOo 

cos oo lo,ooCOS O  olo. 
[d~S tan0e___~[ ] 

COS 0 0 COS 0 e sin (0o - -  0e)['d-- ~ ~ 1 7 6  - -  2 d010=0eJ 

The stationary points of the multi-shaped 
dependence 0e=0e(0o) are the roots of the 
equation doe/d0"o = 0, which leads to: 

(10) 

type have already been mentioned by Carter et al. 
[2, 111. 

(d) 00 =-+ 90 ~ , Oe =-+ Op is an absolute and 
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marginal stationary point of  the dependence 02e = 
0~(0o) (minimum for 0e > 0  ~ maximum for 
0e < 0~ Unlike case (b), the physical meaning 
consists here of  the bombardment  of  an abtuse 
angle (90 ~ + 0p) edge with an ion beam perfectly 
grazing one of the microfacets: 

(e) 0 o = - + 9 0  ~ , 0 ~ = 0  ~ corresponds to a 
marginal extremum point of  the dependence 
0~ = 0~ (0o) (minimum for 0o < 0 ~ maximum 
for 0o > 0~ physically connected to the grazing 
irradiation along one face of  a normal intersection. 
The regression of  angular points takes place along 
the same face; 

(f) other extremum points (0o, 0e) can be 
obtained by solving the system of  Equations 1 
and 11. These stationary points, denoted 0E by 
Carter et al. [2], are connected to some stable 
plane-plane intersections, also graphically 
identified on the associated polar diagrams [6, 10]. 
In Fig. 1, these stationary points are marked as 
follows: 

(i) -- 0o = + 0E~, 0e = ~ 0E~ (local extremum 
for 01e = 01e(0o) - maximum for 0e < 0 ~ mini- 
mum for 0e > 0 ~ 

(ii) --  0o = + 0E~, 0e = ; 0Ea (local extremum 
for 02e = 0~ (0o) - maximum for 0r < 0 ~ , 
minimum for0~ > 0 ~ 

t t 
(iii) - -0o  =-+ 0s, , 0~ = X- 0E~ (absolute 

extremum for 01e = 01e(0o) - minimum for 0e < 
0 ~ maximum for 0e > 0~ 

TABLE IV The dependence 0~ = 02e(0o) 

(iv) -- 0o = ~- 0~, 0e = + 0'  (local extremum --  E l 

for 0~ =0e2(0o) - minimum for Oe <0 ~ maxi- 
mum for 0 e > 0~ 

Although the stationary points 0~ have not 
been identified on the curves 0 e = 0 e ( 0 o )  
numerically calculated for some specific S = S(O) 

dependences [6], they could appear for rapidly 
increasing angular variation o f  sputtering yield 
at small angles. 

The values 0E,, 0E~ correspond to the ir location 
on the erosion slowness curve given by  Carter 
et al. [2]: 0E 1 E ( 0 h ,  90~ 0E2 E(0sx,  0s~). 
AS has resulted from previously given graphical 
evaluations [6, 10], these values can be more 
closely localized: 0El E ( 0 ~ ,  0i*~) and 0E~ E 
(Oi: , Op), In the same manner, O'E, e (0~ , 90 ~ 
and0'E: E(0~ 

2.3. Variation trend of 0 e = 0e(00) 
dependences 

The variation trend of Oe 1 =O~(Oo) and 02e = 
02e(00) curves (Fig. 1) can be easy established 
using the derivative sign inferred from Equation 
10. Both the sign of  the derivative and the 
variation trend for each of  the two curves are 
given in Tables III  and IV,  respectively. 

Table III confirms the known variation trend 
of 01 =0el(0o) and the already mentioned 
stationary points: one absolute maximum (00 = -- 
0p, 01e = 0 p ) ,  two local maxima at range ends 

0 o 

0~ 

sin(00 -- 0 ~) 0 

d2S 0 2 dS[ 
?-~ Io:o:-  2 tan .e dOlo=o ~ 

dS' 
cos20o ~0-010 =0o 0 

d2 2 2 dS[ cos20o --cos 0 e - -  [ 0 
do d O  I o : o g  O=Oo 

do~ 
- -  0 
do o 

0~ 

--90 ~ t - -0p t 

90 ~ 0E~ 

+ + + + 

90 ~ 
i a  

+ 0 

--0E~ t --0~7 t 0 ~ f 0p t Os2 t 90 ~ 

0 ~  0i2 Os2 Op 

- - 0 + + 

+ + + + + + + + 0 

- 0 + 0 

+ + + 0 - 0 + + + + 

0 + 0 

0E l  t 0 ~  $ 0i 2 4 

m ~ i t 

+ + + 0 

- 1  - 0  

4 Os2 $ Op 

ma 
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( 0 o = - - 9 0  ~ 0ae=0p and 0 o = 9 0  ~ , 01e=0~ 
! . 0 t one absolute minimum (0o = 0E 1 , "0Ze = - -  E2) 

and one local minimum (0o = -  0El, 01e = 0E 2) 
(Fig. 1. ). 

According to Table IV, the dependence 02e = 
0~(00) has one marginal absolute maximum 
(0o = - - 9 0  ~ , 02e =90~ one local maximum 

0' (0o = - - 0 ~ ,  0~ = El) ,  one marginal absolute 
minimum (0o = ~ 2 9 0 ,  0e =0p )  and one local 
minimum (0o = - 0'E~, 02e = 0Et) (Fig. 1). 

3. A p p l i c a t i o n s  o f  t h e  t h e o r y  
The analytical Equation 1 for the existence of 
the quasi-stable angular points, having a linear 
trajectory during ion erosion, implies that any 
surface intersection, characterized by 00, 0e 
incidence angles connected by Equation 1, remains 
stable if no interference appears with other 
adjacent angular points during their recessive 
motion. 

The above discussion has allowed an analysis 
of the interdependence between incidence angles 
0o and 0e associated with quasi-stable intersec- 
tions during ion erosion. Various possible types of 
quasi-stable intersections will be reviewed later 
from the point of view of their evolution caused 
by ion bombardment. 

There are only a few orientations (00, 0e) 
associated with quasi-stable angular points for 
plane-plane intersections and they coincide with 
the stationary points of the dependence 0e = 
0e(0o), which is generally characteristic for 
surface-surface or plane-surface intersections. 
The extremum Condition 11 and the analytical 
Condition 1 evidently require not only identical 
motion directions and velocities for intersection 
edge and microfacets but also a unique linear 
trajectory of intersection. The system of both 
these conditions has the following solutions: 

0o = +0p,  0e = ~-0p 

00 = + 90~ = ~'0p 

0o = + 90~ = + 0p 

0o = 0~ = -+90 ~ 

Oo = +OE~,Oe = ~-OE~ 

0o = +-0E~,0e = T-0E~ 

Oo = + O' - ' - E 1,0e = +0E2 

0o = + 0k~,0e = T-0' - -  E 1 

Previous theoretical and experimental results 
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[2, 11-25] have established that many of the 
above orientations lead to quasi-stable plane- 
plane intersections. In the framework of the 
present discussion, the quasi-stability analysis 
of some specific topographic shapes already 
studied can be valuable. 

Many works [1-3,  11-21, 25] have pointed 
out the relative stability of conical shapes bom- 
barded along their axis and having as top angle 
a = 180 ~ -- 20p. The quasi-stable intersection 
of two surfaces (planes) making with an ion beam 
the incidence angles 0o = +- 0p, 0e = ~ 0p contains 
the experimentally observed case of ridges or 
cones aligned along a random direction of ion 
beam at angle 0p to the respective normals. 
However, these cones or ridges lying on a 
horizontal plane are only metastable shapes 
due to the evolution of basis contact points 
leading finally to a tail whose appearance has 
been recently explained [ 11]. 

The topographic shapes of ridge, pyramidal 
or conical type, having 0 * as basis angles and 
r r -  20* as top angle, have been initially con- 
sidered as stable [7]. According to the previous 
computer simulations [3, 8], the present work 
proves that this statement is not correct, since the 
top edge is not a quasi-stable plane-plane inter- 
section even if the basis contact points are quasi- 
stable. 

It has been shown experimentally and theor- 
etically [2, 25-28] that isolated ridges, pyramids 
or cones lying on a horizontal surface are generally 
unstable and transient at normal and oblique 
incidence ion bombardment. In fact, our results 
confirm the instability of these ion-eroded cones 
or pyramids, leading to considerable topographical 
modifications. Thus, some pre-existing angular 
points are not stable and unique during the 
evolution of surface topography. For example, 
the basis contact points for a half angle of (7r/2) -- 
0p (Fig. 2a) and the top point for a half angle of 
(7r/2)--0" (Fig. 2b) are unstable, as has already 
been mentioned, since new angular points are 
generated from those pre-existing. 

The stable cones formed in a pit having vertical 
side walls frequently observed in ion bombard- 
ment experiments [29, 30] correspond to a stable 
combination of orientations (0 ~ -+ 90~ (+ 90 ~ 
�9 - 0p) and (+ 0p, ~- 0p) (Fig. 3a). 

According to our results, the dense arrays of 
cones or pyramids whose microfacet normals 
make, with the ion beam direction, such angles as: 
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Figure  2 The evolution of unstable angular points during ion erosion characteristics for conical (pyramidal) features: 
(a) half angle c~ = (rr/2) -- 0p; (b) half angle c~ = (1r/2) -- 0". 

(1) (+ Op, -7 0v) - normal incidence (Fig. 3b), 
(2) (+0E~,-T-0E2),  and (3) ( + 0 ~ ,  ~0~2 ) -- 
normal and oblique incidence (Figs. 3c to f) 
should present a persistent stability. Recently, 
the stability of  cone or pyramid forests, formed 
on some monocrystalline surfaces of  special 
orientation at normal and oblique ion incidence 
[29, 31, 32] has been discussed [27] but it was 
not possible to distinguish whether the stability 
is due to the continuous generation of new 
features or whether these arrays are really stable. 
The orientations mentioned above correspond in 
our opinion to a true stability. If  the top angles 
of  conical (pyramidal) microtopography are not 
equal to 7r -- 20p, /r -- 0El -- 0E2 , / r --  0~a 
0~2, respectively, and/or the surface covering is 
not complete, it is possible that the angular point 
evolution results in feature shrinking and dis- 
appearance. 

The combination of horizontal and vertical 
surfaces, eventually forming "honeycomb"  struc- 
tures, has been considered as a stable feature at 
normal ion bombardment  [2, 12]. This topo- 
graphy corresponds physically to the stability 
case: (0o = 0 ~ 0e = -+ 90 ~ (Fig. 3g). 

"Pillar" structures consisting of a cone of top 
angle zr -- 200 superimposed on a vertical cylinder 
have been identified as very stable at normal ion 
irradiation on stainless steel surfaces [20]. This 

case is related to a combination of theoretically 
stable orientations: (+- 0p, -7 0p), (+ 90 ~ + 0p) 
and (0 ~ , +- 90 ~ (Fig. 3b). 

Various structures of  high stability such as cliff 
[33, 34] or terraced [26, 35, 36] ones can be 
connected to stable orientation pairs: (0 ~ -+ 0i,); 
(0 ~ , + Oh) and (0 ~ +- 0~') (Figs. 3i, j). 

Besides the experimental cases mentioned, 
there could be conceived a great number of  topo- 
graphical shapes having high theoretical stability 
during ion bombardment .  "Mesas" and "plateaux" 
having slide slopes inclined at 0i~, 00",  0q (0il ~'~ 
0p; 0~), 0 h ~-90 ~ and lying directly on the 
horizontal surface (Fig. 3k) or superimposed on a 
vertical cylinder or prism (Fig. 31) are such cases. 
Some experimental observations of protuberant 
features of  "mesa" or "plateau" type [30, 37, 38] 
appear to be in accordance with the above con- 
siderations. 

In Figs. 3b to f, h, k, and 1 are also shown, for 
different stability cases, both symmetric profiles, 
representing "mirror"  images as opposed to a 
virtual horizontal surface. 

The agreement of the previous experimental 
data with the theoretical results given here suggests 
a possible distinction between three types of  quasi- 
stable intersections, from the point of view of 
their specific evolution: 

(a) surface-surface,  plane-surface or p l ane -  
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Figure 3 Specific topographic features or microreliefs showing a combination of quasi-stable angular points. During ion 
bombardment at normal or oblique incidence a transient or persistent stability can occur as function of trajectory 
interference effects. 

plane intersections characterized by random 
orientations (01o, 02o) which do not satisfy the 
analytical Equation 1. According to earlier works 
[1-3,  39] each of these original edges will pro- 
duce, during ion erosion, two or more other new 
quasi-stable angular points having different linear 
trajectories and being associated to the orienta- 
tions (01, 0e(01o)) and (0g, 0e(0~)), respectively. 
A new curved microfacet, connected with the 
surface (planes) forming the initial intersection, 
might develop between the two trajectories. 
Finally, a local instantaneous change of the 
original microprofile is expected. This general case 
corresponds to the results of Ducommun et al. 

[l] and Cantagrel [39] concerning the evolution 
of eroded steps in silicon. The numerical values 
given in these works are in very good agreement 
with those algebraically estimated in the frame- 
work of the present approach [6, 10]; 

(b) Surface-surface or plane-surface inter- 
sections characterized by special orientations 
(0o, 0e(0o)) where the incidence angles 0o ,0e 
satisfy the analytical quasi-stability condition 
for angular points given in [6] and discussed in 
the present work; 

(c) plane-plane intersections characterized by 
very restricted (0o, 0e) orientation pairs, coincid- 
ing with the stationary points of the 0e = 0e(0o) 
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dependence. Many earlier works [2, 11-25]  were 
concerned about various quasi-stable plane-plane 
intersections of  this type. 

In the last two special cases, the intersections 
could temporarily remain unique and stable 
until their trajectories interfere with the 
trajectories or other adjacent angular points 
upon the eroded microprofile. Although their 
character is practically transient, these inter- 
sections are translated on a single linear 
trajectory in the range of their time stability. 
Thus, a possible relation between the initial 
and ion-eroded surface microtopography can be 
established by means of  these quasi-stable edges 
at least until drastic relief modifications appear 
due to the subsequen t intersections of close 
angular point trajectories. 

A true stability during ion erosion could 
be obtained for special microprofiles exclusively 
containing quasi-stable intersections of b and 
c type, arranged so that no adjacent interference 
effects occur. Thus, the initial microprofiles of this 
kind would be infinitely reproduced during ion 
bombardment. 

4. Conclusions 
The interdependence between the incidence 
angles 0o and 0e associated to quasi-stable inter- 
sections during ion erosion has been discussed. 
This has allowed the location of  0e roots as func- 
tion of 00 and the identification of  stationary 
points and a general trend for the complex 
depdndence 0e = 0 e ( 0 o ) .  The existence of  two 
positive and two negative 0e roots if0o E ( - -90  ~ 
0~) and one positive and two (eventually three) 
negative 0e roots if 0o E(0* ,  90 ~ for a given 0o 
has been mathematically demonstrated. Previous 
computations of  0~ = 0e(0o) curves associated 
with specific S = S ( 0 )  dependences are in very 
good agreement with this discussion. 

The results obtained concerning the quasi- 
stability of angular points can be easily applied 
to confirm and explain earlier theoretical and 
experimental data describing the evolution of  
various surface microfeatures during ion erosion. 

The following quasi-stable intersections having 
linear trajectories can be distinguished: 

(a) surface-surface, plane-surface or p lane-  
plane intersections characterized by random 
orientations (0~, 0o 2) which do not satisfy the 
quasi-stability condition, leading to the instan- 
taneous initiation of  new angular points and 

finally to the drastic change of  the ion eroded 
microrelief; 

(b) surface-surface or plane-surface inter- 
sections characterized by special orientations 
(0o, 0e(00)) where 00, 0e are roots of  the pre- 
viously inferred equation for angular point quasi- 
stability; 

(c) plane-plane intersections characterized by 
a very narrow range of  (0o, 0e) orientation pairs, 
coinciding with the extremum points of  0e = 

0e(00). 
The quasi-stable intersections, mentioned in the 

two last cases, remain temporarily unique on a 
single trajectory until some interference with other 
adjacent edge trajectories occurs. 

Although a local and transient stability will be 
registered in cases (b) and (c), the true space and 
time stability leading to an infinite reproduction 
of the initial microprofile could be obtained only 
for a special topography resulting from an exclusive 
combination of the quasi-stable intersections 
mentioned. 

The present idealized approach did not consider 
complex initial topographies and some important 
secondary effects (thermal diffusion and facetting, 
redeposition, non-uniform flow, ion reflection). 
Further work is necessary to clarify the evolution 
during ion bombardment of a well characterized 
pre-existing microtopography deliberately obtained 
on textured surfaces. 
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